java - Very Simple K-means clustering example in ELKI -
java - Very Simple K-means clustering example in ELKI -
i'm trying utilize kmeans clustering functionality provided elki library.
this came with:
double[][] dblarray = new double[100][10] // 100 10-dimensional info points //populate array... kmeansinitialization<numbervector<double>> kinit = new firstkinitialmeans<>(); kmeanslloyd<numbervector<double>, doubledistance> kmeans = new kmeanslloyd<numbervector<double>, doubledistance>(euclideandistancefunction.static, k, kmeansmaxiter, kinit); databaseconnection dbc = new arrayadapterdatabaseconnection(dblarray)); database d = new staticarraydatabase(dbc, null); kmeans.run(d);
elki gives me:
de.lmu.ifi.dbs.elki.data.type.nosupporteddatatypeexception: no info type found satisfying: numbervector,field , numbervector available types: @ de.lmu.ifi.dbs.elki.database.abstractdatabase.getrelation(unknown source) @ de.lmu.ifi.dbs.elki.algorithm.abstractalgorithm.run(unknown source)
don't forget initialize database:
d.initialize();
at point, info fetched database connections, , indexes built.
if forget initialize database, remain empty.
java cluster-analysis elki
Comments
Post a Comment